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Entrainment Versus Chaos in a Model for a Circadian
Oscillator Driven by Light-Dark Cycles
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Circadian rhythms occur in nearly all living organisms with a period close to 24 h.
These rhythms constitute an important class of biological oscillators which
present the characteristic of being naturally subjected to forcing by light-dark
(LD) cycles. In order to investigate the conditions in which such a forcing might
lead to chaos, we consider a model for a circadian limit cycle oscillator and
assess its dynamic behavior when a light-sensitive parameter is periodically
forced by LD cycles. We determine as a function of the forcing period and of
the amplitude of the light-induced changes in the light-sensitive parameter the
occurrence of various modes of dynamic behavior such as quasi-periodicity,
entrainment, period-doubling and chaos. The type of oscillatory behavior
markedly depends on the forcing waveform; thus the domain of entrainment
grows at the expense of the domain of chaos as the forcing function progres-
sively goes from a square wave to a sine wave. Also studied is the dependence
of the phase of periodic or aperiodic oscillations on the amplitude of the light-
induced changes in the control parameter. The results are discussed with respect
to the main physiological role of circadian rhythms which is to allow organisms
to adapt to their periodically varying environment by entrainment to the
natural LD cycle.

KEY WORDS: Limit cycle oscillations; chaos; periodic forcing; entrainment;
model; circadian rhythms.

1. INTRODUCTION

Periodically forcing an oscillator is a common mode of generating chaos in
chemical, physical and biological systems.("~” Rhythmic phenomena are
encountered at all levels of biological organization, with periods ranging
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from a fraction of a second to years.®® Circadian rhythms which occur in
nearly all living organisms with a period of about 24 h play an important
role in allowing them to adapt to their periodically varying environ-
ment."” Among biological rhythms circadian oscillations possess the
unique characteristic of being continually subjected to periodic forcing.
Indeed, although they can occur in constant darkness or light, circadian
rhythms are naturally driven by light-dark (LD) cycles.!?

Given that chaos can readily result from periodic forcing of an
oscillator, the question arises as to whether the forcing of circadian oscilla-
tions by LD cycles can produce chaos, besides entrainment which is the
response expected and generally observed in physiological conditions.!? If
the physiological role of circadian rhythms is to adapt the living organism
to its environment, then chaos could indeed represent a mode of dynamic
behavior less advantageous than regular oscillations entrained to the exter-
nal period. To investigate the effect of LD cycles on circadian rhythms it
is useful to resort to a molecular model for circadian oscillations and to
determine theoretically the various modes of dynamic behavior which can
arise in this model as a result of periodic forcing.

Thanks to rapid experimental advances on the biochemical mechanism
of circadian clocks made in recent years, particularly in the fly
Drosophila™-'® and in the fungus Neurospora,"'* ' molecular models for
circadian rhythms in these organisms have been proposed.® > In both
systems the mechanism of circadian oscillations involves a negative
autoregulatory feedback loop on gene expression. Thus, in Drosophila, the
protein products PER and TIM of the genes period ( per) and timeless (tim)
form a complex that enters the nucleus and represses the transcription of
the genes per and tim.""'? In Neurospora, it is the protein product FRQ
of the gene firequency (frq) that represses frq transcription.!>1% The effect
of light, however, differs in the two organisms: in the fly light induces TIM
degradation," while in the fungus it triggers frq transcription.(!* 1% In
mammals, many of the circadian clock genes are the same as in Drosophila,
but the effect of light appears to be similar to that in Neurospora, i.e., light
triggers gene expression rather than protein degradation.

To investigate the effects of periodic forcing of circadian oscillations by
LD cycles, we will consider a simple three-variable model proposed for
circadian rhythms in Neurospora.'”-'® We will determine the patterns of
dynamic behavior of the forced system as a function of the period of forcing
and of the amplitude of the light-induced changes in the maximum rate of
gene transcription which represents the light-sensitive control parameter.
The influence of the form of forcing will also be determined; thus the form
of the periodically varying parameter will range from that of a square wave
to a sine wave. The case of the square wave corresponds to LD cycles
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generally realized in laboratory conditions, but the parameter changes
induced by light may not follow precisely the waveform of the LD cycle,
and the natural LD cycle itself clearly differs from a square wave.

In Section 2 we briefly present the molecular model used for the forcing
of circadian oscillations by LD cycles. In Section 3 we determine by numer-
ical simulations the different modes of dynamic behavior resulting from this
periodic forcing. The domains of quasi-periodic oscillations, entrainment,
and chaos are found as a function of the period of forcing and of the
amplitude of the forced, light-sensitive parameter. We determine the phase
of quasi-periodic, entrained and chaotic oscillations with respect to the
phase of the LD cycle. The influence of the waveform of the light-controlled
parameter is considered in Section 4. The occurrence of entrainment versus
chaos is discussed in Section 5 with respect to the main putative role of
circadian rhythms which is to synchronize the temporal dynamics of living
organisms with their periodically varying environment.

2. MODEL FOR CIRCADIAN OSCILLATIONS

In Neurospora the mechanism of circadian rhythmicity relies on the
negative regulation exerted by the protein FRQ on the transcription of its
gene frq into the messenger RNA (mRNA), the translation of which leads
to the synthesis of FRQ.!> A simple model for circadian oscillations of
the protein FRQ and its mRNA in Neurospora (Fig. 1) is governed by the
system of three kinetic equations (la)—(1c):

dm K7 M

—— =, — Uy (la)
dr K7+ F% K,+M

dF¢ Fc

—=kM—vy ———k Fc+k,F 1b
dr s Ude+Fc 1ct+Ryby (1b)
dF

d—f:lecszFN (lc)

In these equations, the three variables M, F., and Fy denote, respectively,
the concentrations (defined with respect to the total cell volume) of the frq
mRNA and of the cytosolic and nuclear forms of FRQ. Parameter v,
denotes the rate of frq transcription; this parameter increases in the light
phase.(!* 1) The other parameters appearing in these equations are the
constant Kj related to the threshold beyond which nuclear FRQ represses
frq transcription, the Hill coefficient n characterizing the degree of
cooperativity of the repression process, the maximum rate v,, of fr¢ mRNA
degradation and the Michaelis constant K, related to the latter process,
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Fig. 1. Scheme of the model for circadian oscillations in Neurospora. The model is based on
the negative regulation exerted by the FRQ protein on the expression of the fiq gene; light
controls the rhythm by enhancing the maximum rate of frg transcription, v,. The model
includes gene transcription in the nucleus, accumulation of the corresponding mRNA in the
cytosol with the associated synthesis of protein FRQ, followed by FRQ transport into and out
of the nucleus. Also indicated is the negative feedback regulation of gene expression by the
nuclear form of the FRQ protein.

ko

the apparent first-order rate constant k, measuring the rate of FRQ syn-
thesis which is assumed to be proportional to the amount of frg¢ mRNA
present in the cytosol, the maximum rate vy of FRQ degradation and the
Michaelis constant K, related to this process, and the apparent first-order
rate constants k,; and k, characterizing the transport of FRQ into and out
of the nucleus.

3. ENTRAINMENT AND CHAOS

Sustained oscillations of the limit cycle type occur in the model in
conditions of constant darkness (Fig. 2A) with a period close to 21.5 h, as
observed in the experiments.'*> When the system is driven by LD cycles,
the effect of light must be incorporated into the model. As indicated above,
the parameter that varies with light is the rate of frg transcription, v,."*
We shall first consider the case where the LD cycle corresponds to a
square-wave variation of the light-sensitive parameter (the effect of other
waveforms is considered in Section 4). Thus, in a LD cycle, parameter v,
remains at a low value (equal to that corresponding to continuous darkness
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Fig. 2. Dynamics of the circadian oscillator model in continuous darkness or LD cycles.
(A) Autonomous oscillations in continuous darkness. (B) Entrainment by LD cycles. (C, D)
Chaotic oscillations in LD cycles. Continuous darkness is symbolized by the black bar; LD
cycles are symbolized by the alternation of white and black bars. The curves have been
obtained by numerical integration of Eqs. (1). Parameter values are: n =4, v,, = 0.505 nMh !,
vg=14 nMh~!, k;=05 h~!, k;,=05 h~ ', k,=06 h~!, K,=05 nM, K;=0.13 nM.
Parameter v, (in nMh ~') remains constant and equal to 1.6 in panel A, and varies in a square
wave manner with a minimum value of 1.6 (in dark phase) and maximum value of 2.25, 3.1,
and 4.2 in B, C, and D respectively. The concentration scale in each graph is expressed in nM.

in Fig. 2A) during the dark phase and increases up to a higher value during
the light phase. In the following, v, will be expressed in nM h~

Shown in panels B-D in Fig. 2 are some of the various modes of
dynamic behavior observed at a given forcing period of 24 h in a LD cycle
of 12 h of light, 12 h of dark when the maximum amplitude of parameter
v, (denoted vy ) during the light phase increases and when the minimum
value of v, during the dark phase remains unchanged and equal to 1.6. The
particular period of 24 h is selected because it corresponds to the period of
natural LD cycles. When 1.6 <uv, ... < 1.91, quasi-periodic oscillations are
obtained (results not shown). For 1.91 <v,,,., <2.64, the oscillations of
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21.5 h period obtained in constant darkness (Fig. 2A) are entrained to the
period of the LD cycle, i.e., 24 h (Fig. 2B). For 2.64 < v, ., <2.82, a series
of period-doubling bifurcations occurs, leading to chaos for v, > 2.82.
Examples of chaotic oscillations are shown in Fig. 2C and 2D for two dis-
tinct values of v, ... The variability of the amplitude of aperiodic oscilla-
tions becomes more pronounced as v ., INCreases.

The results of a more comprehensive study of the effect of the forcing
period and of the value of v, in the light phase are summarized in Fig. 3
where the external period varies from 20 to 30 h, and v, ,,,, increases from
1.6 to 6. As v, . Tises, for periods below or above the autonomous period
of 21.5 h, quasi-periodic oscillations are first observed (but not when the
external period precisely matches the autonomous period); thereafter
entrainment occurs, followed by a sequence of period-doubling bifurcations
(only the domains of period-2 and period-4 oscillations are shown) and
chaos. At large values of the driving period, around 29 h, a second domain

Vs max

20 22 24 26 28 30
Forcing period (h)

Fig. 3. Types of dynamic behavior observed as a function of the forcing period and of the
maximum value v, ..., of the light-sensitive parameter in the light phase. QP, P-2, P-4 denote
quasi-periodic oscillations, period-2 and period-4 oscillations, respectively. In the domain of
entrainment, (a) and (b) correspond to two types of entrainment varying by the phase rela-
tionship with respect to the LD cycle; the phase after entrainment is either to the left or to
the right of the threshold depicted in Fig. 4. Parameter values are the same as in Fig. 2.
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of period-2 oscillations is obtained within the domain of entrainment. The
different modes of dynamic behavior have been characterized by means of
return maps (results not shown) where the maximum (minimum) of a
variable is plotted as a function of the preceding maximum (minimum).

The dashed line in Fig. 3 separates two types of entrainment which dif-
fer by the phase of the oscillations with respect to the driving LD cycle. At
a given forcing period, the phase of the oscillations for each of the three
variables indeed varies in a sigmoidal manner as v, ,,, increases (Fig. 4).
For an external period of 24 h, the threshold of these sigmoidal variations
is located in v, = 2.2. The domains of entrainment below and above the
dashed line in Fig. 3 correspond to conditions of entrainment to the left
and to the right of the threshold value of v, ., in Fig. 4.

Shown in panels A and B of Fig. 5 are the strange attractors corre-
sponding to the two typical cases of chaotic oscillations shown in Fig. 2C
and 2D, respectively. The timing of the peak in cytosolic FRQ (variable F,)
is represented in panels C and D of Fig. 5 with respect to the phase of the
external LD cycle for 1200 successive cycles on the strange attractors of
Figs. 5SA and B, respectively. The corresponding distribution of peak to
peak intervals for F, is shown in panels E and F. A comparison of panels
A, C, E with panels B, D, F indicates that the variability of the phase and
cycle length of chaotic oscillations increases when the value of v, ,,,, during
the light phase of the forcing LD cycle rises.

24

20

16

12

Circadian time of maxima

] | I l ] |
2 2.1 2.2 2.3 24 2.5 2.6

VS max

Fig. 4. Phase of the oscillations after entrainment, as a function of v ,,. The phase of the
maximum in each of the three variables of the model is shown with respect to the phase of
the LD cycle, for a forcing period fixed to 24 h. The white/black bar symbolizes one LD cycle.
Parameter values are the same as in Fig. 2.
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Fig. 5. Chaotic oscillations under forcing by LD cycle. (A) and (B) Strange attractors
corresponding to the chaotic oscillations of panels C and D in Fig. 2, obtained for v, = 3.1
and 4.2 nMh ~!, respectively. (C) and (D) Distribution of the timing of the peak in cytosolic
FRQ (F,) with respect to the phase of the external LD cycle, established for 1200 successive
cycles on the strange attractors of A and B, respectively. (E) and (F) Distribution of peak to
peak intervals for F, established for the successive cycles used for plotting the phase distribu-
tions in C and D. The white/black bar symbolizes one LD cycle. Parameter values are the
same as in Fig. 2.



Entrainment Versus Chaos 657

4. INFLUENCE OF THE FORM OF PERIODIC FORCING

Although the square wave generally represents the on/off variation of
light during an LD cycle in laboratory conditions, it is only an approxima-
tion of the associated variation in parameter v,. The latter, indeed, may
follow the light changes only after a lag and may saturate, i.e., reach a max-
imum value at intermediate light intensities. Furthermore, in natural condi-
tions, the LD cycle does not take the form of a square wave; rather, it may
take forms intermediate between square wave and sine wave.

To investigate the influence of the waveform of the periodic change in
the light-sensitive parameter we have considered a piecewise variation (see
Appendix) such that v remains at a maximum value during a time 7,, at
a minimum value during a time 7,, and undergoes a transition from the
maximum to the minimum value following a sinusoidal function over a tran-
sition time 7,,, while the reverse transition from minimum to maximum
occurs following a sinusoidal function over a transition time 7, (Fig. 6b).
This particular form of periodic variation allows us to encompass all situa-
tions comprised between square wave (Fig. 6a) and sine wave (Fig. 6¢).
Thus, the values 7,, =17,; =0 with 7, =7, =12 h correspond to the case of
the square wave of 24 h period considered in Section 3, while the values
T1, =T, =12 h with 7y =7,=0 correspond to a sinusoidal variation of
24 h period.

We have determined by numerical simulations as a function of v,
the different modes of dynamic behavior resulting from the forcing by a
variation in v,, for a forcing period of 24 h, with transition times
T1, =T, =0 (case of square wave; Fig. 6a), 1, 2, 3, 6, or 9 h (intermediate
cases exemplified by Fig. 6b), or 12 h (case of sinusoidal variation; Fig. 6c).
The values 7,,=1,; =1, 2, 3, 6 or 9 h correspond to situations in which v
switches back and forth, more or less rapidly but in a smooth, sinusoidal
manner, between its maximum and minimum values (Fig. 6b). Figure 7
indicates that the form of the periodic forcing has a marked influence
on the dynamic behavior of the circadian oscillator driven by LD cycles.
The most striking result is that no chaos is obtained over a wide range of
Usmax Values extending from 1.6 to 10 when the system is forced by a
sinusoidal variation in the light-sensitive parameter v,. Only quasi-periodic
oscillations and entrainment are observed in these conditions (Fig. 7, last
column).

The transition from a square wave to a sine wave can be effected con-
tinuously by increasing the value of the transition times 7, = 7,; (see Fig. 6).
The results obtained for the case of a square wave (Fig. 7, 1st column)
are not significantly modified as long as the transition times remain small
relative to the overall period (Fig. 7, columns 2 to 4, established for
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Fig. 6. Waveform considered for the forcing of the light-sensitive parameter. The waveform
(see Appendix) goes from square wave (a) to sine wave (c), and passes through a series of
intermediate waveforms (b). Durations t,, 7,, 7,,, 75, are defined graphically with respect to
period 7. (a) 71,=1,=71/2, T;=175=0; (b) 1,=1=1T=15=6 h; (¢) T;=175=71/2,
T,=7,=0.

T, =T, =1, 2 and 3 h, respectively). As the values of 7,,=71,, further
increase, the domains of quasi-periodicity, entrainment, period-doubling
and chaos are shifted toward larger values of v .., (Fig. 7, columns 5 and 6,
established for 7,,=7,,=6 and 9 h, respectively). This is particularly
noticeable when the transition times have a value of 9 h, meaning that the
parameter v, stays only 3 h at its maximum and at its minimum, and
undergoes back and forth, in 9 h, the transition from one to the other
extreme value. The results of Fig. 7 thus show that chaos is favored by a
square-wave variation in v, while entrainment is favored at the expense of
chaos as the waveform of the parameter approaches that of a sine wave.

5. DISCUSSION

One of the most conspicuous properties of circadian rhythms is that
the natural environment in which they occur varies in a periodic manner.
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Fig. 7. Influence of the type of periodic forcing on the dynamics of the circadian oscillator
model subjected to LD cycles. Shown are the ranges in which quasi-periodic oscillations (QP),
entrainment to the forcing period (E), period-doubling (PD) and chaos occur as function of
Vs max» for different waveforms (see Fig. 6) ranging from a square wave (lst column: 7, =17, =
12 h, 7, =1,; =0) to a sine (last column: 7, =1,=0, 7,, =7,; = 12 h). Other columns refer to
intermediate waveforms (see Appendix) going, from left to right, from square wave to sine wave
(the value of transitions times 7,, = 75, is indicated under each column, with 7, =7, =12 —1,).
In each case the period of forcing is equal to 24 h. Parameter values are the same as in Fig. 2.

To adapt to the recurrent alternation of day and night, nearly all living
organisms have evolved the capability of oscillating autonomously with a
period close to 24 h. These oscillations are generally entrained by natural
LD cycles so that most physiological functions operate with 24 h period-
icity.'9 The fact that chaos can readily originate from the periodic forcing
of an oscillator"™”) raises the possibility that the forcing of circadian
rhythms by LD cycles may generate chaos rather than entrainment. Such
a transition to chaos might have profound consequences with respect to the
physiological role of circadian rhythms.

The goal of this paper was to investigate the possibility of chaotic
dynamics in a mathematical model for circadian limit cycle oscillations
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driven by LD cycles. The model is based on a molecular mechanism in
which a protein represses the transcription of its gene. Such a negative
autoregulatory feedback loop on gene expression underlies circadian
oscillations in several organisms investigated so far, including Drosophila,
Neurospora, mammals, plants, and cyanobacteria.!!'* The particular form
of the model considered here was proposed for circadian rhythms of the
FRQ protein in the fungus Neuropora,'”'® but it is closely related to a
minimal version of the model proposed for circadian oscillations of the
PER protein in Drosophila.®: '

The effect of light in Neurospora is to induce the expression of the gene
frqg that codes for its the protein product FRQ.(*1® Thus we have
represented the effect of LD cycles by a periodic variation in the rate of
transcription of the frq gene, v;. When the variation of this parameter takes
the form of a square wave, quasi-periodic behavior, entrainment, period
doubling and chaos are successively observed as the maximum value of v,
denoted v, ., progressively increases at a given value of the forcing period
(Figs. 2 and 3).

Autonomous chaos has not been observed in the three-variable model
governed by Egs. (1). The latter phenomenon has been observed, however,
in the absence of periodic forcing in a more extended, 10-variable model
proposed for circadian oscillations of the PER and TIM proteins in
Drosophila.?® Chaos occurs in that model in a restricted domain of param-
eter values which is much smaller than the domain of periodic oscillations.
In that model we have found that autonomous chaos can be suppressed by
sinusoidal as well as square-wave LD cycles and that, like in the present
model, LD cycles may induce the transition from limit cycle oscillations to
chaos for other parameter values.

The phase of circadian oscillations is an important characteristic from
a physiological point of view since it relates the timing of the peak of a
given variable to the phase of the applied LD cycle. In the domain of
entrainment, the simulations of the model indicate that the phase of the
oscillations varies in a sigmoidal manner as a function of vy, (Fig. 4).
The value of the threshold characterizing this sigmoidal curve is close to
2.2 in the conditions of Fig. 4 where the forcing period is equal to 24 h; this
threshold value is precisely the one that would yield an autonomous period
of 24 h if v, were held constant at that value.

In the domain of quasi-periodic behavior, the phase corresponding to
the peak of any of the three variables sweeps the whole range of the 24 h
LD cycle (data not shown). In the domain of chaos, the phase of the forced
oscillations also varies, though to a lesser extent: the distribution of this
phase for the peak in cytosolic FRQ protein (F,) extends over 5 h in the
dark part of the LD cycle in the conditions of Fig. 5C, but the range over
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which it varies is much wider at the larger value of vy, considered in
Fig. 5D. In the latter case, indeed, the phase varies over the 12 h of the
dark part and the first hour of the light part of the LD cycle.

If the occurrence of a fixed phase relationship with respect to the peri-
odic environment represents a functional advantage, then we may expect
that quasi-periodic behavior and chaos were selected against in the course
of biological evolution, and that living organisms have evolved instead to
operate in conditions where entrainment occurs with respect to the natural
LD cycles. Although the present results were obtained in a particular
molecular model for circadian rhythmicity, this model is representative of
a class of mechanisms based on autoregulatory negative feedback loops on
gene expression. The results should therefore be of general significance for
the forcing of circadian rhythms by LD cycles, even though the effect of
light at the molecular level may vary in different organisms (see Section 1).

When the variation of the light-controlled parameter v, becomes peri-
odic, entrainment occurs when the amplitude of the light-induced change in
this parameter is in a range bounded by two critical values. When the
amplitude of v, is below this range, quasi-periodic oscillations occur,
whereas above this range chaos is found after a cascade of period-doubling
bifurcations. Thus, the circadian oscillatory system could have evolved so
as to operate in a range of parameter values such that the light-induced
value of the light-sensitive parameter lies in the entrainment range and not
in the range producing either quasi-periodicity or chaos.

The data of Fig. 7 show that the waveform of the periodic variation
in the light-controlled parameter has a marked influence on the type of
dynamic behavior resulting from the forcing of the circadian oscillator by
LD cycles. At a fixed value of the forcing period, as the maximum value of
the light-sensitive parameter v, increases in the light phase of the LD cycle,
the domain of entrainment grows at the expense of the domain of chaos
when the waveform tends to become more of a sine curve and less of a
square wave. As shown in Fig. 7, when the forcing period is equal to 24 h,
chaos has disappeared altogether in the range considered for v, when the
variation becomes sinusoidal. (Chaos can nevertheless be obtained with a
sinusoidal variation for other forcing periods and other choices of the max-
imum and minimum values of v, e.g., for a sinusoidal variation between
0.7 and 2.5 with a period of 29 h.)

In natural conditions, light does not vary like a square wave over 24 h,
even though such a square wave variation is achieved and commonly used
in laboratory conditions. Even so, however, it is likely that the light-sensitive
parameter does not follow a square wave and that its variation is intermediate
betwen a square wave and a sine function. The present results suggest that
the form of the changes induced by the LD cycle in the light-sensitive
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parameter could have been selected so as to favor the occurrence of
entrainment instead of quasi-periodic behavior or chaos.

Besides its relationship to the physiological significance of circadian
rhythms in natural conditions, the present study suggests a procedure for
studying experimentally the occurrence of entrainment or chaos in circadian
oscillators forced by LD cycles of varying period and amplitude. The
application of the present analysis to such experiments would require the
quantitative determination of how the light-sensitive biochemical parameter
controlling circadian oscillations varies as a function of light intensity.

APPENDIX: FUNCTION USED FOR PERIODIC FORCING WITH
WAVEFORM GOING FROM SQUARE WAVE TO
SINE WAVE

The function representing the periodic variation in the light-sensitive
parameter (see scheme in Fig. 6b) is defined as follows:

— When 0< ¢ (mod 7) <7y

+ Us max — Us min 1 + SlIl 27[
Vo=71. _
S S min 2 2 21

— When 7,; <t (mod 7) < (75 + 71): Vs = Vg max
— When (75, +17,)<? (mod 7) < (15 + 7, +72):

+ Us max — Us min 1 +sin 27[
Ve =Ug mi —_— i
s s min P 2 1

— When (75, +7,+7,) <t (mod 7) < 7: vy =04 min

where:

t = time;

Uy min = Minimum value of v, (corresponding to the D phase of the LD
cycle);

Uy max = Maximum value of v, (corresponding to the L phase of the LD
cycle);

=forcing period =17, + 7, + 71, + 75;
7, (t,) =duration of the L (D) phase of the LD cycle;

T21 (712) = traHSition tlme from Us min(Us max) to Us max(vs min);
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11 =t(mod 7) —75,/2;
tip=1(mod 7) — (75 + 71) + 712/2.

When t,; =7,, =0, the function becomes a square wave (Fig. 6a), while for
7, =1,=0 and 7,; =1, it reduces to a sine wave (Fig. 6¢).
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